Real zeros of the Hurwitz zeta function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the distribution of zeros of the Hurwitz zeta-function

Assuming the Riemann hypothesis, we prove asymptotics for the sum of values of the Hurwitz zeta-function ζ(s, α) taken at the nontrivial zeros of the Riemann zeta-function ζ(s) = ζ(s, 1) when the parameter α either tends to 1/2 and 1, respectively, or is fixed; the case α = 1/2 is of special interest since ζ(s, 1/2) = (2s − 1)ζ(s). If α is fixed, we improve an older result of Fujii. Besides, we...

متن کامل

Simple Zeros of the Riemann Zeta-function

Assuming the Riemann Hypothesis, Montgomery and Taylor showed that at least 67.25% of the zeros of the Riemann zeta-function are simple. Using Montgomery and Taylor's argument together with an elementary combinatorial argument, we prove that assuming the Riemann Hypothesis at least 67.275% of the zeros are simple.

متن کامل

The Critical Values of Generalizations of the Hurwitz Zeta Function

We investigate a few types of generalizations of the Hurwitz zeta function, written Z(s, a) in this abstract, where s is a complex variable and a is a parameter in the domain that depends on the type. In the easiest case we take a ∈ R, and one of our main results is that Z(−m, a) is a constant times Em(a) for 0 ≤ m ∈ Z, where Em is the generalized Euler polynomial of degree n. In another case, ...

متن کامل

Integral representations of q-analogues of the Hurwitz zeta function

Two integral representations of q-analogues of the Hurwitz zeta function are established. Each integral representation allows us to obtain an analytic continuation including also a full description of poles and special values at non-positive integers of the q-analogue of the Hurwitz zeta function, and to study the classical limit of this qanalogue. All the discussion developed here is entirely ...

متن کامل

On the real roots of the Bernoulli polynomials and the Hurwitz zeta-function

The behaviour of the real roots of the Bernoulli polynomials Bm(a) for large m is investigated. It is shown that if N(m) is the number of these roots then lim m→∞ N(m) m = 2 πe We also show that on the interval Im : − [ m−2 2πe ] < a < 1 + [ m−2 2πe ] , the roots of Bm(a) are close to the half-integer lattices: a = 0,±1/2,±1,±3/2,±2, ... if m is odd, and a = ±1/4,±3/4,±5/4,±7/4, ... if m is eve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2018

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa8647-11-2017